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A primary goal of the Supporting the Transition from Arithmetic to Algebraic Reasoning
(STAAR) project is to characterize students’ emerging algebraic thinking. Algebraic variables
are an integral part of both the conventional algebra curriculum as well as less traditional
curricula. For example, the text for the Connected Mathematics Project (CMP) (REF)—the
curriculum used by students in our study—has roughly 250 problems and examples involving
variables in the sixth-grade text and roughly 1500 problems and examples in the seventh-grade
text. Both this ubiquity and their conceptual complexity suggest that algebraic variables should
be considered in studying the development of students’ algebraic reasoning. STAAR researchers
have been analyzing students’ evolving responses to written assessment and interview items
while concurrently developing a framework to describe the ways in which students interpret
algebraic notation and think about algebraic variables. The framework will also allow us to
identify and classify students’ misconceptions about representations of variables. Before
reporting students’ responses to a subset of our written assessment and interview items, we
outline a collection of prior results and theories that inform our work.

The Framework For Analyzing Variable Use

We incorporate ideas from several studies and conceptual frameworks that describe
students’ interactions with variables. Along with several studies that deal with students’
misconceptions about algebraic variables (see e.g. Kinzel, 1999), we integrate theories that can
be classified into three general categories: psychological models, experiential models, and
structural models. The framework is both “top-down” as well as “bottom-up;” while we use prior
theory as a starting point to create items for our written assessments and interviews, we look at
students’ responses to these items to inform our understanding of prior theories, decide which
elements to keep in the framework, and generate new aspects of the framework. As such, the
framework is constantly evolving.

Psychological Component

For many years, the preeminent psychological model was one proposed by Kuchemann
(1978). He classified student responses to questions involving variables into general categories
and then ordered them into Piagetian levels. The resulting hierarchical categories described
students’ treatment of literal symbols while implicitly incorporating a structural hierarchy. For
example, the category “letter used as a specific unknown” —in which the letter is interpreted as
an unknown number with a fixed value—is described as a lower level than the category “letter
used as a generalized number”—in which the letter is interpreted as taking on multiple values in
turn. Kuchemann’s descriptions of the uses of algebraic variables are useful because they provide
a basis for constructing questions that elicit a wide range of student responses. We have, in fact,
used his descriptions to generate our initial set of written assessment variable items. We have
not, however, found his assertion of the existence of a strict Piagetian hierarchy—the basis of his
analysis—to be compelling because it does not take into account the role of experience.

In contrast, Trigueros and Ursini (2003) explicitly divide letter use into three structural

% ¢

categories — ‘unknown number”, “generalized number” and “functional relationship”)—and



then present levels of psychological conceptualization within each category. They justify the
hierarchical structure by citing the demands of prerequisite knowledge. For example, Trigueros
and Ursini claim that “pattern recognition” is the lowest level of their generalized number
hierarchy because “A prerequisite in order to develop an understanding of variable as a general
number, is the ability to recognize patterns and to find or deduce general rules and methods
describing them” (p. 4). As with Kuchemann’s study, we find Trigueros and Ursini’s
descriptions of their levels to be useful but feel that their psychological ordering does not take
into account the important role of students’ previous experiences of working with representations
of variables.

The process-object frameworks developed by Dubinsky (1996), Sfard (1991) and Tall
(1994) can be used to characterize some types of student interactions with variables and their
representations. Dubinsky’s Action-Process-Object-Schema framework, while widely used as a
tool to analyze many aspects of student cognition, has previously been applied to student
conceptions of variables in only a handful of studies (e.g. Trigueros, 1996). This framework can
explain why a student may have trouble (for example) adding three to “a number divided by
five” because “a number divided by five” (or x/5) must be conceptualized as an object that may
be acted upon in order to add a number to it. This process-object idea can be very useful for
describing student responses to similar items.

Experiential Component

The only major study (of which we are aware) that has explicitly described the role of
students’ experience and prior knowledge when interpreting literal symbols was conducted by
MacGreggor and Stacey (1997). While generally accepting Kuchemann’s (1978) framework,
they provide numerous examples to demonstrate that students’ experiences contribute to the
ways in which they interact with variables. For example, MacGreggor and Stacey propose that
experience with concatenation of symbols (concatenation indicates addition in arithmetic
thinking) may prompt students to express “10 more than 4.” for example, as 10/ in the same way
that “five more than 20” would be expressed as “25.” Although it would be impossible take into
account all possible types of experiences involving emerging thinking about variables when
creating a framework, we are attempting to incorporate a general sense of the experiences
students have had to enable us to more clearly understand their interactions with variables.

The idea of “prototypes” or “concept image” (e.g. Vinner, 1983) can be employed as
another tool to describe students’ interactions with variables. As Trigueros and Ursini (2003)
note of students in their study, “Superficial characteristics of the expressions seem to determine
their decisions independently of the use of variable involved in the problem. Many of their
actions appear to be provoked by external signs (for example, exponents, the equal sign, the way
in which a question is posed) that lead them to respond in stereotyped forms.” (p. 19). Although
we are not aware of studies that have employed the idea of prototypes in the context of algebraic
variables, they can certainly be effectively descriptive tools.

In addition to looking at other studies, the STAAR project is analyzing the ways in which
variables are used in the CMP textbooks. We are analyzing the semiotic structure of the variables
(how they are used and represented) as well as the kinds of tasks in which the students are asked
to use them. We hope that this analysis will offer further insight into the role of experience in
students’ conceptions of variables.



Structural Component

It has already been noted that both Kuchemann (1978) and Trigueros and Ursini (2003)
have used hierarchical models to describe increasingly sophisticated ways of interacting with
variables. Usiskin (1988) has also proposed a structure to describe variable use. His model
consists of four ways of using variables: as pattern generalizers used to translate and generalize
patterns, as unknowns or constants used to simplify and solve equations, as arguments or
parameters in functional relationships, or as abstract elements of algebraic structures such as
groups and rings. Several researchers (e.g. Radford 2001, Presmeg 2001, Ernest 2002) have
proposed that semiotic analysis can be a useful tool for describing mathematical symbol use and
production. Although very few studies have actually attempted to do this for variables, this call
seems to complement both the idea that students’ prior experiences with representations of
variables are important and the idea that we may describe variables structurally by the way they
are used. We have used the structural models (proposed by Kuchemann, Trigueros and Ursini,
and Usiskin) as a basis for our semiotic description of variables in our analysis of the CMP text.
We incorporate these semiotic ideas into our framework by considering the ways in which we
both use and represent algebraic variables (and the ways we interpret and create those
representations).

Although a detailed description of our evolving framework is beyond the scope of this
paper, we have attempted to unify these three components into a coherent analytical tool. We
employ the framework in the discussion of our initial results in the sections to follow.

Participants and Instruments

Our written assessment was administered to 373 students (123 sixth-graders, 115
seventh-graders and 135 eighth-graders) in a middle school. Thirty-one sixth-graders participated
a videotaped, semi-structured interview (all but four of the interview participants also completed
the written assessment). These written assessment and interview items will be administered to
the current sixth-graders for two more years to enable us to gather longitudinal data on their
thinking about variable.

Using ideas from our evolving framework, we created general descriptions of student
responses and then categorized these responses. All codes were checked for reliability with
independent coders reaching at least 85% agreement. Although the interviews have yet to be
formally coded, we provide some informal analysis of them in this paper to contribute to our
analysis of the written items.

Items involving algebraic variables formed a proper subset of both the written assessment
and interview items. We discuss three of the written assessment items and use results from two
of the interview items to enrich our analysis. The first written assessment item was designed to
elicit students’ basic interpretations of what a letter could represent in a mathematical context:

The following questions are about this expression:
2n+3
!
a) The arrow above points to a symbol. What does the symbol stand for?
b) Could the symbol stand for the number 4? Please explain your answer.
¢) Could the symbol stand for the number 37? Please explain your answer.
d) Could the symbol stand for the expression 3r + 2? Please explain your answer.

Part a is designed to determine if students are familiar with the symbols, while part b is



designed to determine if students believe n can represent a number. We ask if # can stand for 37
to determine if students think a single letter can represent a two-digit number. We ask if n can
stand for 37+2 to determine if students think » can represent an expression that can be viewed as
a process and if they view the » (in 37+2) as a process or an object.

Although the 6™ grade CMP text has problems and examples involving variables that are
represented by letters, the written assessment was administered early in the school year and
students may not have had much experience with variables represented by letters. In arithmetic
reasoning, concatenation indicates place-value addition (so if # stands for 4, 2n would stand for
24). Since students may view # as representing a single place value, they may not think it could
represent 37, which uses two place values. It is unlikely that students, especially in 6™ and 7™
grades (where they have not yet had much experience substituting expressions for variables), will
believe n can represent 37+2. Process-object theories suggest that students initially view a
variable as the act of substituting an “object” for the variable. If 3+2 indicates the process of
addition or if 7 represents an act of substitution, it is not an “object” that can be substituted in
place of n.

The second written assessment item was designed to determine whether students thought
of letters as representing quantities or as abbreviations for words (such as ¢ representing
“cakes”), as they are commonly used outside of explicitly mathematical contexts:

Cakes cost ¢ dollars each and brownies cost b dollars each. Suppose I buy 4 cakes and 3
brownies. What does 4c¢ + 3b stand for?

Students’ prior experience could prevent them from producing a correct answer. We
frequently use letters to represent words and this experience would lead many people to view 4¢
as representing “four cakes.” Since the correct answer is given by the expression 4c+35 in its
entirety (that is, one must somehow “join” the 4¢ and 3b which represent distinct parts of the
total cost), students need either to view 4¢+3b as an encapsulated quantity or to have experience
with similar questions.

The third written assessment item was designed to determine if students could more
easily conceptualize a varying quantity in a verbal form than in the standard notation with a
literal symbol. Students were given one of the following two versions, with 123 students
responding to the first (“symbolic”) version and 250 responding to the second (““verbal”) version.

Symbolic Version:
Can you tell which is larger, 3n or n + 6? Please explain your answer.

Verbal Version:

A friend gives you some money. Can you tell which is larger,

the amount of money your friend give you plus six more dollars, OR
three times the amount of money your friend gives you?

Please explain your answer.

The idea of verbal advantage (Koedinger, Alibali & Nathan, 1999) predicts that students
will be more successful with the verbal version, which is grounded in a context that should be
familiar to most students.

The first interview item was nearly identical to the first written assessment item, but
enabled the interviewer to probe for sources of misconceptions. Although several probes were



specified, each interviewer was free to include additional probes as they deemed appropriate:

I’'m going to ask you some questions about this expression.
Clip card with 2n + 3 to the paper.

a) Have you seen mathematical expressions like this before?
If yes: Where have you seen them?

b) Draw arrow pointing to n from below.
Could you tell me what this symbol stands for?

c¢) Could the symbol stand for the number 37? Write 37 on the paper.
(Probe: Why/why not?)

d) Could the symbol stand for 27 + 15? Write 27 + 15 on the paper.
(Probe: Why/why not?)

¢) Could the symbol stand for the expression 4r + 1? Write 4r + 1 on paper.
(Probe: Why/why not?)

b1

The second interview question was designed to elicit students
varying quantities.

natural” ways of representing

I’'m going to describe a situation and I’d like you to tell me how you could write it mathematically.
“I have some number of pencils and then get three more.”
How would you write that mathematically?

a) Could you explain your notation to me? Why did you decide to write it this way?

b) What if, after getting the three more pencils, I get two more pencils? How many pencils do I
have now?
Why did you decide to write it that way?

If student uses a letter or symbol such as a box to represent the number of pencils you started
with, ask:
What does that [letter/symbol] stand for? Could you have used a different [letter/symbol]?

If student is comfortable with these representations, continue.

¢) What if I start with some number of pencils and then get three pens? How could you write that
mathematically?

(Probes: If student writes (exactly) the same expression [symbol] +3 for both parts a and ¢, point
to their work in part a and ask:

I notice these are the same expressions, but in part a the expression was about pencils and now the
expression is about pencils and pens. How can they be the same?)

(Probes: If student writes: [symbol] +3 for both parts a and ¢ (but the symbol used in part e is
different than the symbol used in part a), then ask:

What you just wrote looks similar to what you wrote in part a. Could you have written the
expression [from part c] this way [point to the expression in part a]? Why or why not?)

d) Point back to student’s notation in part a while talking. What if, after starting with some
number of pencils and then getting three more, I doubled the number of pencils I have? How could
you write that mathematically?



Results and Discussion

Problem 1

We found parts b, ¢, and d of the first written assessment item to be progressively more
difficult for students. Overall, students’ performance increased with grade, and older students
experienced a smaller drop in performance from part b to part c. Part d, however, was difficult
for all students. Table 1 shows the percentage of students who responded “Yes” by grade. Table
2 shows the percentage of students who indicated that » could stand for any number or
expression (and in part d students who indicated that since 7 stands for a number, 37+2 is a
number and # can stand for it) by grade. Finally, Table 3 shows the percentage of students who
responded, “Yes” and justified their answer by indicating that » can represent any number or
expression, again by grade.

Table 1 — Students Responding ‘“Yes,” by Grade

Grade |Can n stand for 4? |Can n stand for 377 Can n stand for 3r+2?
6 56% 30% 26%
7 77% 67% 30%
8 87% 81% 47%

Table 2 — Students Indicating n Can Represent Any Number or Expression, by Grade

Grade |Can n stand for 4? |Can n stand for 377 Can n stand for 3r+2?
6 35% 22% 11%
7 60% 55% 11%
8 73% 73% 22%

It is not surprising that students were progressively more likely to believe that n could
represent any of these three possibilities as they got older. As students are introduced to variables
(informally in sixth-grade and formally in seventh-grade) they become more comfortable using
letters to represent quantities and transition from reasoning arithmetically to reasoning
algebraically. From a semiotic perspective, the students experience new signs as they formally
encounter variable and unknown signifieds and become experienced at interpreting letters as
having meaning similar to “missing value” or “fill-in-the-blank” problems. From a psychological
perspective, 3r+2 presents an additional hurdle to jump, as students must either rotely accept that
a letter may stand for “any expression” or encapsulate these processes that involve adding two
quantities into a single quantity or object that can be substituted for the letter. The expression
3r+2 additionally involves multiplication of two quantities within the addition of two quantities,
necessitating another act of encapsulating “3 times 7 into a quantity. Furthermore, if a student
views a variable as “the act of replacing the letter with a number,” they must encapsulate the
letter as the result of this substitution before they can encapsulate the entire expression 37+2 as a
mathematical quantity. The significance of encapsulation is underscored by the following
interview excerpt:



Interviewer: Have you seen mathematical expressions like this before?
Where have you seen them?

Student: I think so. I think we did something like this in fifth grade.

1: What sort of things were you doing in fifth grade?

S: I just remember n because it was one of the variables my teacher used.

I: Okay. Could you tell me what this symbol stands for?

S: (No response)

I: You don’t know? What if you had to guess, what would it stand for?

S: Um

1: How about this? Could n stand for the number 4?

S: It could because letters are also used as variables and so n could be any
number.

I: Could n stand for the number 37? (Writes 37 on paper)

S: Yeah.

I: That would be okay? Great. Could n stand for 15 + 27?

S: I think so.

1: Why do you think so?

S: Because well actually I don’t think so really because variables just
stand for one number. You could have n plus another letter or variable
and n could be 15 and the other variable could be 27.

I: Can you write down what you just said?

S: I think that n can stand for 15, so n = 15 (writes n=15) and p can equal
27 (writes p=27) so then if you did n + p would equal 42 (writes n + p =
42).

I: Okay. So could n stand for—I’m going to write this a little differently.
What if I put 15 + 27 in parentheses? Could n stand for that?

S: Yes because when you have parentheses that means before you do
anything else, you do whatever in the parentheses is first and what is in
the parentheses stands for another number and so 15 plus 27 in the
parentheses would stand for 42.

I: And that would be okay?

S: Yeah.

I: Could n stand for 4r + 1 in parentheses (writes (4r + 1))?

S: I don’t think so because it couldn’t really stand for well actually yes it
could because it’s all in parentheses so the r could stand for another
number and then it would all be one number actually but inside the
parentheses and so you’d have to do that and come up with an answer.

I: Okay what about (writes (4r) + 1)? Could n stand for that?

S: No.

1: How come?

S: Because what is in the parentheses stands for a separate number so and
it’s basically what you did up here (points to 15 + 27). It’s as if you
were doing like 10 plus 5 in parentheses and then plus 27 out of the
parentheses.

I: Could n stand for the letter r all by itself?



S: I don’t think it could because n, variables stand for numbers and if n
were a variable then it would have to stand for a number, not another
letter.

1: Would it make a difference if I put parentheses around it (writes (r) on
paper)?

S: I think it might.

1: How come?

S: Because then n is standing for what r equals, not just r but I’'m not quite
sure.

I: So it seems okay if n stands for what r equals?

S: Yeah.

I: So that’s sort of what you were saying up here (points to (4r + 1). You
look at what this equals and it’s okay for n to stand for that?

S: Yeah.

I: Okay, good thinking.

This student sees a distinction between an expression that represents a process—such as
27+15—and the result of that process. The distinction between r and (r)—*“what r
equals” —indicates that this student conceives of r as representing an action or process of
replacing the symbol r with a value and not the encapsulated result of that process.

Table 3 - Students Justifying “Yes” by Indicating n Can Represent Any Number, by Grade

Grade |Can n stand for 4? |Can n stand for 377 Can n stand for 3r+2?
6 60% 68% 35%
7 78% 81% 37%
8 85% 90% 45%

Students’ inability to justify their “Yes” responses could be a result of their limited
experience. They may not yet have a deep enough understanding of the situation to be able to
verbalize their reason for answering “Yes.” Alternatively, they may have developed a concept
image of mathematical expressions and literal symbols that affords an answer of “Yes” but limits
their understanding to only superficial aspects of the image.

Problem 2

As with problem 1, students’ performance on problem 2 increased with grade, with older
students were more likely to say that 4c+3b represented the total cost of cakes and brownies.
Almost 60% of eighth-graders gave either this response or indicated that 4c+3b represented 4
times the cost of the cakes plus three times the cost of the brownies, while the percentage of
sixth- and seventh-graders giving one of these responses were nearly 30% and 40%, respectively.



Table 4 shows the percentage of students in each grade who gave either one of these responses or
indicated that 4c+3b represented “4 cakes and 3 brownies,” treating ¢ and b as standing in for
words. Students not represented in this table either gave no response, indicated that they didn’t
know how to respond, or gave responses that could not be classified into statistically significant
groups.
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Table 4 - Student Responses by Grade

4 Cakes and |4 Times the Cost of Cakes Plus
Grade |3 Brownies |3 Times the Cost of Brownies |Total Cost

6 22% 17% 11%
7 37% 21% 18%
8 27% 33% 26%

Although Kuchemann claimed that students would need to have progressed to a particular
developmental level in order to move beyond a “4 cakes and 3 brownies” response, we can also
interpret these responses on semiotic, experiential and psychological axes. Focusing our attention
on 4c¢, we may hypothesize about how a student might reason about this sign. In the statement of
the question, the student is told that “c” is the “cost of cakes.” The sign “c” has a clearly outlined
signifier until it is concatenated with the 4. Now the student must draw on prior experience with
concatenation and substitution to interpret 4c as both two separate signs with distinct meanings
as well as a single sign that indicates the act of multiplication of two quantities The student must
then encapsulate the result of this action into yet another sign that represents the result of that
multiplication (although the symbol remains constant, the signifier changes). If the student does
not recognize that this process involves a shift in the signified, they may be stuck in their
interpretation of the multiplication-signified or attempt to erroneously re-interpret the
multiplication. If the student can view 4c as a single sign but still interprets the sign as
multiplication, or if they cannot encapsulate 4¢, they may view the 4 and the c as still-distinct
signs and interpret 4c¢ as “four times what ¢ represents.” Alternatively, if the student can not
encapsulate 4c¢ as a quantity, they may rely on previous experiences with symbols like 4c and
arrive at a reasonable interpretation of “four of some object that is represented by c.”

If the student can view 4c as an encapsulated quantity, they must do the same thing for the sign
3b and then finally for the sign 4c+3b. Students may also have experience with mathematical
situations and expressions like those in question 2 and may be able to use these images to
construct “total cost” as a reasonable answer to the question. This triaxial analysis offers insight
into the cognitive resources a student uses to interpret, engage in, and provide an answer for this
problem, with the role of experience (with similar problems, similar signs and the process of
encapsulation) explaining why older students provided more sophisticated answers.

Problem 3

Problem 3 produced interesting results when we compared student responses by grade
and by form (with the “verbal” form stating the situation in words and the “symbolic” form
giving a symbolic expression to analyze). As with the other written items, student responses
increased in sophistication with their grade. While there was little difference across forms for
seventh- and eighth-graders, the sixth-graders were significantly more successful at giving
correct and sophisticated responses for the verbal form than for the symbolic form. Table 6
shows the percentage of students (by form and grade) who indicated that you couldn’t tell if 3n
or n+6 is larger. Table 7 shows the percentage of students (by form and grade) who viewed n as
taking on multiple values (for example, stating that n could be both 1 and 10). Table 8 shows the
percentage of students (again, by form and grade) who indicated that you couldn’t tell which is
larger and justified this by saying that n could take on multiple values. Nearly all students who
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indicated that one cannot tell which was larger viewed n as a variable except for sixth-graders
who were given the symbolic form.

Table 6 - Students Responding ““Can’t Tell” by Grade and Form

Grade [Verbal |Symbolic
6 43% 18%
7 57% 54%
8 68% 64%

Table 7 - Students Viewing n as a Variable, by Grade and Form

Grade |Verbal |Symbolic
6 40% 10%
7 49% 51%
8 63% 60%

Table 8 - Students Justifying “Can’t Tell” by Viewing n as a Variable, by Grade and Form

Grade |Verbal |Symbolic
6] 89% 57%
7l 86% 95%
8 95% 93%

In contrast to the first two written assessment items, a sophisticated response to this
problem requires that the student view the varying quantity as just that—something that can not
only take on multiple values, but must have those static values compared to each other. More
explicitly, the amount of money or value of n can not only be 1 or 10—making the potential
amounts of money $3 and $7 (when the amount of money is 0) or $30 and $16 (when the amount
of money is 10)—but these value pairs must be simultaneously compared in order to realize that
one cannot determine the answer from the given information.

The most striking aspect of students’ responses is the performance of sixth-graders on the
symbolic form of the question. While the seventh- and eighth-graders have experience working
with symbolic variables, many of the sixth-graders have not yet formally used letters to represent
either unknown numbers or varying quantities. However, these students are still able to conceive
of varying quantities when the situation is sufficiently grounded within a context—a verbal
advantage. They can access the mechanisms they have developed to deal with the situation and
not only begin to analyze the possible amounts of money but also to realize that the outcome of
situations like this probably depend on the details of the situation.

Insights From the Interviews

The first interview question prompted a wide range of responses. Sixth-graders indicated
that they had encountered variables in many different capacities, from seeing them in older
siblings’ textbooks to their participation in extracurricular math clubs. They exhibited a wide
range of responses to the four parts of this question, frequently demonstrating misconceptions
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such as the idea that a letter must represent only a single-digit number. Most interestingly,
students responded differently when expressions were written inside parentheses. For example, a
student who thought that n couldn’t stand for 27+15 because it couldn’t represent addition
thought that n could stand for (27+15). We hypothesize that the inclusion of parentheses could
help students encapsulate expressions and plan to systematically include the addition of
parentheses in future interviews.

Students were generally successful with the second interview question, with all but two
able to find a way to mathematically represent the situation “I have some number of pencils and
then get three more.” We found a positive correlation between responding “Can’t tell” to written
question 3 and using a letter to represent the “some number” of pencils, as well as a weak
positive correlation between responding viewing the letter/unknown amount of money in written
question 3 as a varying quantity and using a letter to represent the number of pencils.

Limitations

The most serious limitation on the written items was, of course, not knowing if the
students’ responses were a good indicator of their thoughts or understanding. This is underscored
by the fact that students who provided unsophisticated answers on the written questions (such as
writing “I don’t know”) were able to provide thoughtful answers to the same questions when
interviewed. Similarly, student responses were limited by their attention span and patience
during the interview.

Because we are generating our framework from student responses to the written and
interview questions, our interpretations are constantly evolving. Although we are occasionally
able to modify our items to reflect new theories, the longitudinal design of the experiment limits
the extent of our modifications.

Since experience plays such an important role in shaping students’ conceptions of
algebraic variables and their representations, students who do not use CMP may conceive of
variables differently. Finally, the students at the middle school where this study was conducted
perform well on standardized tests, which may limit the generalizability to students at other
schools.

Conclusions

Although our instruments and framework for interpreting and analyzing students’
interactions with representations of algebraic variables are constantly evolving, we have been
able to use what we have thus far constructed to provide insightful descriptions of students’
responses. The psychological-experiential-structural framework allows us to harness powerful
ideas from previous studies to provide insight into student performance on our written and
interview items. We plan to continue integrating ideas of encapsulation and the role of
experience into our analysis and interview prompts to make further connections between the
longitudinal interview and written responses.
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