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Abstract: Algebra is a focal point of reform efforts in
mathematics education, with many mathematics educators
advocating that algebraic reasoning should be integrated at all
grade levels K-12. Recent research has begun to investigate
algebra reform in the context of elementary school (grades K-5)
mathematics, focusing in particular on the development of
algebraic reasoning. Yet, to date, little research has focused on
the development of algebraic reasoning in middle school
(grades 6-8). This article focuses on middle school students’
understanding of two core algebraic ideas—equivalence and
variable—and the relationship of their understanding to
performance on problems that require use of these two ideas.
The data suggest that students’ understanding of these core
ideas influences their success in solving problems, the strategies
they use in their solution processes, and the justifications they
provide for their solutions. Implications for instruction and
curricular design are discussed.

Kurzreferat: Algebra ist einer der Schwerpunkte der
Reformbemiihungen in der Mathematikdidaktik, und viele
Mathematikdidaktiker fordern daher, dass algebraisches
Begriinden in alle Klassenstufen ab der Vorschule bis
Jahrgangsstufe 12 integriert werden sollte. Neuere Studien
haben begonnen, Reformen des Algebraunterrichts im Kontext
des Mathematikunterrichts an der Grundschule zu untersuchen;
dabei legen sie den Schwerpunkt auf die Entwicklung von
algebraischem Argumentieren. Bisher gibt es nur wenige
Untersuchungen, die sich mit der Entwicklung des
algebraischen Argumentierens im unteren Sekundarbereich
befassen. Dieser Beitrag untersucht nun vor allem das
Verstdndnis von Lernenden des unteren Sekundarbereichs
hinsichtlich zweier algebraischer Grundideen - Gleichungen
und Variablen - sowie den Zusammenhang ihres Verstindnisses
mit ihren Leistungen bei Aufgaben, fiir welche die Anwendung
dieser beiden Grundideen zentral ist. Die Daten legen die These
nahe, dass das Verstdndnis der Lernenden hinsichtlich dieser
beiden zentralen Ideen sowohl Auswirkungen auf ihre Erfolge
beim Losen der Aufgaben haben, als auch auf die wihrend des
Losungsprozesses verwendeten Strategien sowie auf die von
ihnen gegebenen Begriindungen fiir ihre Losungen. Ferner
werden Auswirkungen auf Unterricht und
Curriculumentwicklung diskutiert.

ZDM-Classification: C30, H20

1. Introduction
Algebra is considered by many to be a “gatekeeper” in
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school mathematics, critical to further study in
mathematics as well as to future educational and
employment opportunities (Ladson-Billings 1998;
National Research Council [NRC] 1998). Unfortunately,
many students experience difficulty learning algebra
(Kieran 1992), a fact that has led to first-year algebra
courses in the United States being characterized as “an
unmitigated disaster for most students”. (NRC p. 1) In
response to growing concern about students’ inadequate
understandings and preparation in algebra, and in
recognition of the role algebra plays as a gatekeeper,
recent reform efforts in mathematics education have
made algebra curricula and instruction a focal point (e.g.,
Bednarz, Kieran, & Lee 1996; Lacampagne, Blair &
Kaput 1995; National Council of Teachers of
Mathematics 1997, 2000; NRC 1998; RAND
Mathematics Study Panel 2003). In fact, Kaput (1998)
has argued that algebra is the keystone of mathematics
reform, and that teachers’ abilities to facilitate the
development of students’ algebraic reasoning is the most
critical factor in algebra reform. Moreover, he contended
that the “key to algebra reform is integrating algebraic
reasoning across all grades and all topics—to ‘algebrafy’
school mathematics”. (p. 1)

Underlying this call to ‘algebrafy’ school mathematics
is a belief that the traditional separation of arithmetic and
algebra deprives students of powerful schemes for
thinking about mathematics in the early grades and makes
it more difficult for them to learn algebra in the later
grades (Kieran 1992). Algebrafying school mathematics,
however, means more than moving the traditional first-
year algebra curriculum down to the lower grades. There
is a growing consensus that algebra reform requires a
reconceptualization of the nature of algebra and algebraic
reasoning as well as a reexamination of when children are
capable of reasoning algebraically and when ideas that
require algebraic reasoning should be introduced into the
curriculum (Carpenter & Levi 1999). Recent research has
begun to investigate algebra reform in the context of
elementary school mathematics, focusing in particular on
the development of algebraic reasoning (e.g., Bastable &
Schifter in press; Carpenter, Franke, & Levi 2003;
Carpenter & Levi; Kaput in press). Yet, to date, little
research has focused on the development of algebraic
reasoning in the middle grades—the time period linking
students’ arithmetic and early algebraic reasoning and
their development of increasingly complex, abstract
algebraic reasoning. In this article, we present results
from a multi-year research project that seeks to
understand the development of middle school students’
algebraic reasoning. In particular, the article focuses on
students’ understanding of two core algebraic
ideas—equivalence and variable—and the relationship of
their understanding to performance on problems that
require use of these two ideas.

2. Student understanding of equivalence & variable

Algebraic reasoning depends on an understanding of a
number of key ideas, of which equivalence and variable
are, arguably, two of the most fundamental. In this
section we briefly describe research that has examined
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students’ understandings of these two ideas; this
description will serve to situate the present study in the
larger body of research as well as to highlight the
contribution of the present study.

2.1 Equivalence

The ubiquitous presence of the equal sign symbol in
mathematics at all levels highlights its important role in
mathematics, in general, and in algebra, in particular.
Within the domain of algebra, Kieran (1992) contended
that “one of the requirements for generating and
adequately interpreting structural representations such as
equations is a conception of the symmetric and transitive
character of equality—sometimes referred to as the ‘left-
right equivalence’ of the equal sign”. (p. 398) Yet, there
is abundant literature that suggests students do not view
the equal sign as a symbol of equivalence (i.e., a symbol
that denotes a relationship between two quantities), but
rather as an announcement of the result or answer of an
arithmetic operation (e.g., Falkner, Levi, & Carpenter
1999; Kieran 1981; McNeil & Alibali in press; Rittle-
Johnson & Alibali 1999). For example, Kieran (1981)
found that 12- and 13-year old students described the
equal sign in terms of the answer and provided examples
of its use that included an operation on the left-hand side
of the symbol and the result on the right-hand side (e.g., 3
+ 4 = 7). McNeil and Alibali (in press) found similar
conceptions of the equal sign in definitions generated by
third- through fifth-grade students.

While such a (mis)conception concerning the meaning
of the equal sign may not be problematic in elementary
school, where students are typically asked to solve
equations of the form a + b = [, it does not serve
students well in terms of their preparation for algebra and
algebraic ways of thinking. In algebra, students must
view the equal sign as a relational symbol (i.e., “the same
as”) rather than as an operational symbol (i.e., “do
something”). The relational view of the equal sign
becomes particularly important as students encounter and
learn to solve algebraic equations with operations on both
sides of the symbol (e.g., 3x - 5 = 2x + 1). A relational
view of the equal sign is essential to understanding that
the transformations performed in the process of solving
an equation preserve the equivalence relation (i.e., the
transformed equations are equivalent)—an idea that many
students find difficult, and that is not an explicit focus of
typical instruction. Steinberg, Sleeman, and Ktorza
(1990) concluded that many eighth- and ninth-grade
students do not have a good understanding of equivalent
equations. They found that many students knew how to
use transformations in solving equations, however, many
of these same students did not seem to utilize such
knowledge in determining whether two given equations
were equivalent. Although not examined in their study, it
seems reasonable to conclude that many of these latter
students may have had inadequate conceptions of
mathematical equivalence.

2.2 Variable

Algebra has been called the study of the 24™ letter of the
alphabet. Although this characterization is somewhat
facetious, it underscores the importance of developing a
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meaningful conception of variable in learning and using
algebra. The idea of variable, not surprisingly, has also
received considerable attention in the mathematics
educational research community (e.g., Kiichemann 1978;
MacGregor & Stacey 1997; Philipp 1992; Usiskin 1988),
and the results of such work suggest that the use of literal
symbols in algebra presents a difficult challenge for
students. In Kiichemann’s frequently cited study, for
example, he found that most 13-, 14-, and 15-year-old
students considered literal symbols as objects (i.e., the
literal symbol is interpreted as a label for an object or as
an object itself). Few students considered them as specific
unknowns (i.e., the literal symbol is interpreted as an
unknown number with a fixed value), and fewer still as
generalized numbers (i.e., the literal symbol is taken to
represent multiple values, although it is only necessary to
think of the symbol taking on these values one at a time)
or variables (i.e., the literal symbol represents, at once, a
range of numbers). Further, his study showed that
students’ misunderstandings of literal symbols seem to be
reflected in their approaches to symbolizing relationships
in problem solutions—an essential aspect of algebra and
algebraic ways of thinking.

In sum, developing an understanding of equivalence
and variable is essential to algebra and the ability to use
it, yet they are ideas about which many students have
inadequate understandings. In this article, we examine the
meanings middle school students ascribe to the equal sign
and variable, their performance on problems that require
use of these ideas, and the relationship between the
meanings they ascribe to each and their performance on
the corresponding problems.

3. Method

3.1 Participants

Participants were 373 middle-school (6" through 8™
grade) students drawn from an ethnically diverse middle
school in the American Midwest. The demographic
breakdown of the school’s student population is as
follows: 25% African American, 5% Hispanic, 7% Asian,
and 62% White. The middle school had recently adopted
a reform-based curricular program, Connected
Mathematics, and, with the exception of one section of 8™
grade algebra, the classes were not tracked (e.g., all 6
grade students were in the same mathematics course).
The school was selected as the site for this research based
upon the recommendation of the school district’s
mathematics resource teacher, who felt that the principal
and teachers would be interested in participating.

3.2 Data collection

The data that are the focus of this article consist of
students’ responses to a subset of items from a written
assessment that targeted their understandings of various
aspects of algebra. In particular, the focus is on four items
that were designed to assess students’ understanding of
the ideas of equal sign (1 item) and of variable (1 item) as
well as their performance on two problem solving items
that (potentially) required the use of these ideas. The
assessment consisted of three forms with some overlap of
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items; all 373 students were administered the equal sign
understanding and variable understanding items, 251
students were administered the equal sign performance
item, and 122 students were administered the variable
performance item. The assessment was administered near
the beginning of the school year.

3.2.1 Equal sign items
In the first item (shown in Fig. 1), students were asked to
define the equal sign. The rationale for the first prompt

The following questions are about this statement:
3+4 =17
1

a) The arrow above points to a symbol. What is the
name of the symbol?

b) What does the symbol mean?

c¢) Can the symbol mean anything else? If yes, please
explain.

Figure 1: Interpreting the equal sign.

(What is the name of the symbol?) was to preempt
students from using the name of the symbol in their
response to the second prompt (What does the symbol
mean?). The rationale for the third prompt (Can the
symbol mean anything else?) was to provide students the
opportunity to give an alternative interpretation; in
previous work, we have found that students often offer
more than one interpretation when given the opportunity.
The second item (shown in Fig. 2), the equivalent
equations problem, was designed to assess students’
understanding of the fact that the transformations

Is the number that goes in the [_| the same number in the
following two equations? Explain your reasoning.

2x[]+15 = 31 2x[]+15-9 = 31-9

Figure 2: Using the concept of mathematical equivalence.

performed in the process of solving an equation preserve
the equivalence relation. We expected that students who
viewed the equal sign as representing a relationship
between quantities would conclude that the number that
goes in the box is the same in both equations because the
transformation performed on the second of the two
equations preserved the quantitative relationship
expressed in the first equation.”

3.2.2 Variable items

Item 3 (shown in Fig. 3) was designed to assess students’
interpretations of literal symbols. The fourth item (shown
in Fig. 4), the which is larger problem, was designed to
assess students’ abilities to use the concept of variable to
make a judgment about two varying quantities. In
particular, to be successful on the final item, students

2 There were two versions of the equivalent equations problem,
one which used a box (as in Fig. 2) and one which used 7 to
represent the missing values. Performance did not differ
across versions (60% correct box, 61% correct n), and the
distribution of strategies used to solve the problem did not
differ across versions (%> (4, N = 252) = 1.729, ns), so we
collapse across versions in the analyses presented in this
paper.
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must recognize that the values of 3n and n + 6 are
dynamic and depend on the value of #, that is, they must

The following question is about this expression:
2n + 3

1

The arrow above points to a symbol. What does the symbol
stand for?

Figure 3: Interpreting a literal symbol used as a variable.

Can you tell which is larger, 3n or n + 6? Please explain your
answer.

Figure 4: Using the concept of variable.

view n as a variable—a literal symbol that represents, at
once, a range of numbers.

3.3 Coding

In this section we provide details regarding the coding of
each item; in the results section, we provide sample
student responses. For all items, responses that students
left blank or for which they wrote “I don’t know” were
grouped in a no response/don’t know category, and
responses for which students’ reasoning could not be
determined and responses that were not sufficiently
frequent to warrant their own codes were grouped in an
other category.

3.3.1 Coding equal sign understanding

Student responses to parts b) and c) of Item 1 were coded
as relational, operational, other, or no response/don’t
know, with the majority of responses falling into the first
two categories. A response was coded as relational if a
student expressed the general idea that the equal sign
means “the same as” and as operational if the student
expressed the general idea that the equal sign means “add
the numbers” or “the answer”. In addition to coding the
responses to parts b) and c) separately, students were also
assigned an overall code indicating their “best”
interpretation. Many students provided two
interpretations, often one relational and one operational,
in such cases, the responses were assigned an overall
code of relational.

3.3.2 Coding performance on the equivalent equations
problem

Students’ responses to Item 2 were coded for correctness
as well as strategy use. Responses were coded as correct
if students responded that the two equations have the
same solution. Students’ strategies for solving the
problem were classified into one of five categories:
answer after equal sign, recognize equivalence, solve and
compare, other, or no response/don’t know. In the answer
after equal sign category, students’ rationale for their
conclusion was that each equation had the same “answer”
(in this case, 31) to the immediate right of the equal sign
and the equations were therefore equivalent (an incorrect
strategy). In the solve and compare category, students’
rationale for their conclusion was based on either (1)
determining the solution to the first equation, substituting
that solution into the second equation, and noting that the
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value satisfied both equations, or (2) determining the
solutions to both equations and comparing them. Finally,
in the recognize equivalence category, students’ rationale
for their conclusion was based on recognizing that the
transformation performed on the second equation
preserved the equivalence relation. Note that only the
recognize equivalence strategy appears to explicitly
require a relational understanding of the equal sign.

3.3.3 Coding variable understanding

Students’ responses to the literal symbol interpretation
item were classified into five categories, multiple values,
specific number, object, other, or no response/don’t know.
A response was coded as multiple values if the student
expressed the general idea that the literal symbol could
represent more than one value; as specific number if the
student indicated that the literal symbol represents a
particular number; and as object if the student suggested
that the literal symbol represents a label for a physical
object (such as stating that n represents newspapers).

3.3.4 Coding performance on the which is larger problem
Students’ responses to the which is larger problem were
coded both in terms of the judgment about which quantity
was larger (3n, n + 6, or can’t tell) and for the reasoning
underlying that judgment. Students’ explanations of their
reasoning were classified into five categories: variable
explanations, single-value explanations, operation
explanations, other, or no response/don’t know. Variable
explanations expressed the general idea that one cannot
determine which quantity is larger because the variable
can take on multiple values. Single-value explanations
tested a single value and drew a conclusion on that basis;
thus, students’ conclusions varied depending on the value
tested. Operation explanations expressed the general idea
that one type of operation leads to larger values than the
other (for example, multiplication produces larger values
than addition).

3.3.5 Coding reliability

To assess reliability of the coding procedures, a second
coder rescored approximately 20% of the data.
Agreement between coders was 90% for coding students’
interpretations of the equal sign, 91% for coding students’
strategies on the equivalent equations problem, 91% for
coding students’ interpretations of literal symbols, and
95% for coding students’ explanations on the which is
larger problem.

4. Results

We focus first on students’ interpretations of the equal
sign symbol, and how these interpretations relate to
performance on the equivalent equations problem. We
then turn to students’ interpretations of a literal symbol
(n) used as a variable, and how these interpretations relate
to performance on the which is larger problem.
Representative excerpts from students’ written responses
are provided to illustrate particular findings. In reporting
the results, we describe (and illustrate) only those coding
categories that are most germane to the focus of the
article. Finally, the statistical analysis of the data was
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performed using logistic regression because the outcome
variables of interest were categorical. All reported
statistics are significant with alpha set at .05.

4.1 Interpretation of the equal sign

We first examined the relationship between grade level
and interpretation of the equal sign symbol. The
following responses are typical of those coded as
operational:

“It means the total of the numbers before it”. (6™ grade student)

“It means whatever is after it is the answer”. (8" grade student)

The following responses are typical of those coded as
relational:

“It means the number(s) on its left are equivalent to the
number(s) on its right”. (6™ grade student)

“The things on both sides of it are of the same value”. (7™ grade
student)

Students were classified as providing a relational
interpretation if they provided one on either their first or
second response. As seen in Fig. 5, the proportion of
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E 0.60 % / /7 O NR/Don't know
s [ Other
< / £ Operational
g 040 7/ B Relational
g
& 0.20 -
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Figure 5: Equal sign interpretations of sixth-, seventh-, and
eighth-grade students.

students providing a relational interpretation for the equal
sign differed across the grades, Wald (2, N = 373) = 7.80,
and this difference was accounted for by a significant
linear trend, B = 0.52, z = 2.78, Wald (1, N = 373) =
7.72. Despite this improvement across grades, however,
the overall level of performance was strikingly low. Even
at grade 8, only 46% of students provided a relational
interpretation of the equal sign.

4.2 Performance on the equivalent equations problem
The proportion of students who correctly judged that the
two equations had the same solution differed across the
grades, Wald (2, N = 251) = 10.21, p = .006, and was
accounted for by a significant linear trend, [;’ =0.72,z=
3.18, Wald (1, N = 251) = 10.08, p = .002. Students’
strategies for solving the equivalent equations problem
are displayed in Table 1. The majority of students’
strategies were categorized into one of the following
categories: recognize equivalence, solve and compare, or
answer after equal sign. Typical responses in each of
these three categories included the following:
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“Yes because you’re doing the same equation but just minusing
9 from both sides in the second one”. (recognize equivalence,
8™ grade student)

“Yes if you substitute 8 for n, each answer will be equal and
make sense [student shows computations for determining the
value of n and for checking that the value satisfies the second
equation]”. (solve and compare, 6™ grade student)

“Yes because it has to be to get a 31 in both answers”. (answer
after equal sign, 6™ grade student)

As seen in Table 1, there was also a substantial number
of students who left their answer sheets blank, simply
wrote that they did not know, or used idiosyncratic
strategies (i.e., strategies that could not be determined or
that were insufficiently frequent to warrant their own
codes, both of which were classified as other strategies).
To some extent, the large proportion of strategies in the
other category may not be too surprising: with the

Table 1: Proportion of students at each grade level who used
each strategy use on the equivalent equations problem.

Grade Level
Strategy 6" 7" 8"
Recognize equivalence 0.12 0.17 0.34
Solve and compare 0.39 0.33 0.25
Answer after equal sign 0.11 0.11 0.11
Other 0.31 0.25 0.27
No response/Don't know 0.08 0.14 0.02

exception of one 8" grade algebra class, the students’
exposure to algebra, in general, and equivalent equations,
in particular, had been minimal at best. (Alternatively, it
is encouraging to see that so many students—students
who used the recognize equivalence or solve and
compare strategies—were able to engage with the
problem in mathematically appropriate ways prior to
formal instruction in “algebra”.)

Is interpretation of the equal sign associated with
performance on problems that involve equations? More
specifically, do students who hold a relational view of
this symbol perform better than their peers who do not
hold such a view on a problem for which they must judge
the equivalence of two equations? To find out, we
examined the relationships among grade level (6, 7 or 8),
equal sign interpretation (relational or not), and
performance on the equivalent equations problem. We
first consider students’ judgments about whether the two
equations had the same solutions or not, and then we
consider their strategies for arriving at those judgments.

As seen in Fig. 6, students who provided a relational
interpretation of the equal sign were more likely to judge
that the two equations had the same solutions than were
students who did not provide a relational interpretation.
The effect of equal sign interpretation was significant
when controlling for grade level, /3’ =-1.24, z = -4.15,
Wald (1, N = 251) = 17.23. In addition, the effect of grade
level was significant when controlling for equal sign
interpretation, Wald (2, N = 251) = 9.00, and was
accounted for by a significant linear trend, /3’ =0.70,z =
2.98, Wald (1, N =251) = 8.89.

As seen in Fig. 7, students who provided a relational
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interpretation for the equal sign were also more likely to
use the recognize equivalence strategy than were students
who did not provide a relational interpretation. The effect
of equal sign interpretation was significant when
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Figure 6: Proportion of sixth-, seventh-, and eighth-grade
students in each equal sign understanding category who
answered the equivalent equations problem correctly.

controlling for grade, /3’ =-1.33,z=-4.01, Wald (1, N =
251) = 16.10. In addition, the effect of grade level was
significant when controlling for equal sign interpretation,
Wald (2, N = 251) = 12.11, and was accounted for by a
significant linear trend, /3’ =0.93,z=3.17, Wald (1, N =
251) = 10.05. It is worth noting that a subset of students
who used the recognize equivalence strategy (24%)
displayed an operational view of equality on the equal
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Figure 7: Proportion of sixth-, seventh-, and eighth-grade
students in each equal sign understanding category who used
the recognize equivalence strategy on the equivalent equations
problem.

sign interpretation item. Thus, different problem contexts
appear to activate or draw on different aspects of
students’ knowledge.

In sum, students’ understanding of the equal sign was
associated with their performance on the equivalent
equations problem, both in terms of their judgments for
the problem and the strategies they used to arrive at those
judgments. Thus, students who demonstrated a relational
understanding of the equal sign appeared to use this

5
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understanding in determining that the two equations had
the same solutions.

4.3 Interpretation of a literal symbol

We turn now to students’ interpretations of a literal
symbol (n) used as a variable in a mathematical
expression. The most common meaning students at all
three grade levels provided was that of a variable—the
literal symbol could represent more than one value. The
following responses are representative of the multiple
values code:

“The symbol is a variable, it can stand for anything”. (6™ grade
student)

“A number, it could be 7, 59, or even 363.0285”. (7™ grade
student)

“That symbol stands for x which stands for a number that goes
there”. (8" grade student)

In the final example above, it is interesting that the
student apparently felt the need to replace n with x, the
latter of which represents a number; this response may be
an artifact of school mathematics in which the
prototypical literal symbol is x. Not surprisingly, as seen
in Fig. 8, the proportion of students providing a correct
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Figure 8: Students’ interpretations of a literal symbol.

interpretation (i.e., multiple values) differed across the
grades, Wald (2, N = 372) = 22.58, increasing from fewer
than 50% of students in grade 6 to more than 75% of
students in grade 8. This improvement across grades was
accounted for by a significant linear trend, [;’ =091,z=
4.71, Wald (1, N =372) =22.27.

It is also worth noting the relatively large proportion
of 6™ grade students whose responses were categorized as
either other or no response/don’t know. One possible
explanation for the nature of these students’ responses
relates again to the curriculum: the first formal
introduction of the concept of variable does not occur
until the 7™ grade (in the Connected Mathematics
curriculum), thus the 6™ grade students may lack
experience with literal symbols used as variables in
algebraic expressions.

4.4 Performance on the which is larger problem

Fig. 9 displays students’ judgments to the question
prompt (i.e., Can you tell which is larger, 3n or n + 6?),
and Table 2 displays the justifications students provided
for their judgments. In some cases, students provided

6
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only a judgment and not a justification for their judgment
(justifications in these cases were assigned to the no
response/don’t know category).

In the 6™ grade, the majority of students appeared
either unable to provide a justification or to provide an
idiosyncratic justification (see Table 2). Relative to the 6"
grade students, the 7" and 8" grade students were more
likely to respond with a correct justification that focused
on the fact that the literal symbol could take on multiple
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Figure 9: Students’ judgments on the which is larger problem.

values. The following justifications are typical of
variable responses:

“No because you don’t know what 7 is”. (6™ grade student)
y g

“No, because # is not a definite number. If n was 1, 3n would be
3 and n + 6 would be 7, but if n was 100, 3n would be 300 and »
+ 6 would be 106. This proves that you cannot tell which is
larger unless you know the value of #”. (8" grade student)

Although the coding category of single value appeared
in fewer than 5% of the responses at each grade level, it is
worth noting, because these students at least seemed to

Table 2: Proportion of students at each grade level who
provided each type of justification for the which is larger

problem.
Grade Level
Justification 6™ 7™ g™
Variable 0.11 0.51 0.60
Single Value 0.03 0.05 0.04
Operation 0.00 0.05 0.09
Other 0.42 0.15 0.16
No response/Don't know 0.45 0.23 0.11

recognize that the literal symbol represents a number. In
such cases, the students tested a specific number and
based their judgments on the results of their
computations. Likewise, the coding category of operation
was also rare. Based on prior work (e.g., Greer 1992), we
expected that some students would focus on the operation
(for example, one seventh-grade student stated, “Yes, n +
6 is bigger because they +”.). Although such responses
did occur in 7™ and 8" grades, they represented fewer
than 10% of the responses at each grade level.

Is holding a multiple-values interpretation of n
associated with performance on the which is larger
problem? That is, were students who interpreted the
literal symbol (item 3) as a variable more likely to answer
“can’t tell” and to provide a correct justification than
were students who did not provide a multiple-values
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interpretation? To find out, we examined the relationships
among grade level (6, 7 or 8), literal symbol
interpretation (multiple values or not), and performance
on the which is larger problem. We first consider
students’ judgments about whether 3n or n + 6 is larger,
and then we consider their justifications.

As seen in Fig. 10, students who provided a multiple-
values interpretation were indeed more likely than their
peers who did not provide a multiple-values interpretation
to answer “can’t tell” on the which is larger problem. The
effect of having a multiple-values interpretation was
significant when controlling for grade level, B =-097,z
= 2.22, Wald (1, N = 122) = 4.90. In addition, the
proportion of students who correctly answered “can’t
tell” increased across the grade levels. The effect of grade
level on performance was significant when controlling for
literal symbol interpretation, Wald (2, N = 122) = 11.54,
and was accounted for by a significant linear trend, B =
1.27,z=3.34, Wald (1, N =122) = 11.13.
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Figure 10: Proportion of sixth-, seventh-, and eighth-grade
students in each literal symbol interpretation category who
provided a correct judgment for the which is larger problem.

Lastly, as seen in Fig. 11, students who provided a
multiple-values interpretation of the literal symbol were
also more likely than were students who did not provide a
multiple-values interpretation to provide correct
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Figure 11: Proportion of sixth-, seventh-, and eighth-grade
students in each literal symbol interpretation category who
provided a correct justification for the which is larger problem.

justifications on the which is larger problem. The effect
of having a multiple-values interpretation was significant

when controlling for grade, B =-0.95,z="-2.05, Wald (1,
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N = 122) = 4.21. Further, the proportion of students who
provided a correct justification increased across the grade
levels. The overall effect of grade was significant when
controlling for literal symbol interpretation, Wald (2, N =
122) = 13.79, and was accounted for by a significant
linear trend, B = 1.61, z = 3.65, Wald (1, N = 122) =
13.32. It is worth noting that a subset of students who
provided a correct justification on the which is larger
item (20%) did not provide a multiple values
interpretation on the variable understanding item. Thus,
as for the equal sign items, different problem contexts
appear to activate or draw on different aspects of
students’ knowledge.

In sum, understanding of variable was associated with
performance on the which is larger problem, in terms of
both students’ judgments about which quantity was larger
and their justifications for their judgments. Thus, students
who had a multiple-values interpretation of a literal
symbol appeared to use this understanding in determining
that one cannot tell whether 3 or n + 6 is larger.

5. Discussion

The focus of this paper was on middle school students’
understandings of the ideas of equivalence and variable,
their performance on problems that require use of these
ideas, and the relationship of their understanding to
performance. In this section, we briefly discuss the results
and their implications for mathematics education.

5.1 Equivalence Results

The finding that many students hold an operational view
of the equal sign is not particularly surprising, given that
similar results have been found in previous research (e.g.,
Falkner et al., 1999; Kieran 1981; McNeil & Alibali in
press; Rittle-Johnson & Alibali 1999). Although our
results suggest that students’ views of the symbol become
more mathematically sophisticated (i.e., view the equal
sign as a relation between two quantities) as they progress
through middle school, the majority of students at each
grade level continued to exhibit less sophisticated views
of the equal sign (e.g., as a “do something” symbol). This
result is troublesome in light of our finding that students
who have a relational view of the equal sign
outperformed their peers who hold alternative views on a
problem that requires use of the idea of mathematical
equivalence. We report elsewhere that middle school
students’ views of the equal sign also play a role in their
success in solving algebraic equations and simple algebra
word problems (Knuth, Stephens, McNeil, & Alibali
under review). Taken together, such results suggest that
an understanding of equivalence is a pivotal aspect of
algebraic reasoning and development. Consequently,
students’ preparation for and eventual success in algebra
may be dependent on efforts to enhance their
understanding of mathematical equivalence and the
meaning of the equal sign.

Yet, equivalence is a concept traditionally introduced
during students’ early elementary school education, with
little instructional time explicitly spent on the concept in
the later grades. In fact, teachers generally assume that
once students have been introduced to the concept during
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their elementary school education, little or no review is
needed. Some previous work at the elementary school
level has focused on promoting a relational view of the
equal sign (e.g, Carpenter et al. 2003); however, there is
little explicit attention to this concept in the later grades.
This lack of attention may explain, in large part, why
many students continue to show inadequate
understandings of the meaning of the equal sign in
secondary school and even into college (e.g., McNeil &
Alibali in press; Mevarech & Yitschak 1983). Further
exacerbating students’ opportunities to develop their
understanding of equivalence is the fact that very little
attention is paid to the concept in curricular
materials—despite the ubiquitous presence of the equal
sign. Moreover, analyses of middle school curricular
materials suggest that relational uses of the equal sign are
less common than operational uses (McNeil, Grandau,
Stephens, Krill, Alibali, & Knuth 2004). This pattern of
exposure may actually condition students to favor less
sophisticated and generalized uses of equivalence (such
as “operations equals answer”).

5.2 Variable Results

The findings regarding students’ views of literal symbols
are, in general, more positive than the results of previous
research (cf. Kiichemann 1978). In particular, a
substantial proportion of students interpreted a literal
symbol as representing more than one value, increasing
from approximately 50% of the 6 grade students to more
than 75% of the 8" grade students. Students’ use of this
knowledge suggests, however, that knowledge of the
concept of variable may be somewhat fragile, particularly
among 6"-grade students, who were largely unable to
correctly answer the which is larger problem. Yet, those
students who did provide a multiple-values interpretation
of a literal symbol were more likely than their peers to
not only use this understanding to determine that one
could not tell whether 3n or n + 6 is larger, but also to
provide a correct justification for why one could not tell
which is larger. These latter results highlight the
importance of fostering a multiple-values interpretation
of literal symbols and suggest that efforts to foster such
an interpretation will likely contribute to students’
preparation for algebra and algebraic ways of thinking.

In contrast to the treatment of equivalence, the concept
of variable is one that receives explicit instructional and
curricular attention in middle school (7" grade in the
Connected Mathematics curriculum). It may be the case,
however, that providing students with opportunities to
meaningfully encounter literal symbols in ways that
support the development of a multiple-values
understanding at an earlier age may be beneficial in terms
of their preparation for and eventual success in algebra (a
perspective shared by others, e.g., Carraher, Brizuela, &
Schliemann 2000). Students often encounter literal
symbols during their elementary school education (e.g., 8
+3 =0, 3 + ?=7), however, the nature of such exposure
may lead students to consider literal symbols in less
sophisticated and mathematically powerful ways (e.g., as
specific numbers).
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6. Concluding remarks

If a goal of mathematics education reform is to better
prepare all students for success in algebra, then the nature
of students’ “pre-algebraic” mathematical experiences
must lay the foundation for more formal study of algebra.
Much of this foundation can be laid as well as
strengthened in the middle school grades—the time
period linking students’ arithmetic and early algebraic
reasoning and their development of increasingly complex,
abstract algebraic reasoning. In this paper we presented
results concerning students’ understanding of two
fundamental algebraic ideas—equivalence and
variable—and the relationship of their understanding to
performance on problems that require use of these two
ideas. It is our hope that these results will inform the
work of both teachers and curriculum developers, so that
they can each provide more opportunities for students to
develop their understanding of these core concepts.
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